-
记号:向量值函数f(x)的梯度(向量):∇f=∂x∂f=(∂x1∂f,∂x2∂f,∂x3∂f,…)T
-
记号:u是某方向的单位向量,向量值函数f的方向导数记为:
∇uf(x)=∇f(x)⋅u
雅各比矩阵是所有向量值函数的一阶导数。 When the matrix is a square matrix, both the matrix and its determinant are referred to as the Jacobian in literature.
假设:f:Rn→Rm是以n维向量为自变量,以m维向量为函数值函数,f的雅各比矩阵J是一个m×n的矩阵。定义为:(每个梯度向量转置的合并)

或者分量形式:
Jij=∂xj∂fi
This matrix, whose entries are functions of x, is also denoted by Df, Jf, and ∂(x1,…,xn)∂(f1,…,fm)
那么,If p is a point in ℝn and f is differentiable at p, then its derivative is given by Jf(p). In this case, the linear map described by Jf(p) is the best linear approximation of f near the point p, in the sense that
f(x)=f(p)+Jf(p)(x−p)+o(∣∣x−p∣∣)
∂x∂y=[∂x1∂y∂x2∂y⋯∂xn∂y].
∂x∂y=⎣⎢⎢⎡∂x∂y1∂x∂y2⋮∂x∂ym⎦⎥⎥⎤.
∂x∂y=⎣⎢⎢⎢⎡∂x1∂y1∂x1∂y2⋮∂x1∂ym∂x2∂y1∂x2∂y2⋮∂x2∂ym⋯⋯⋱⋯∂xn∂y1∂xn∂y2⋮∂xn∂ym⎦⎥⎥⎥⎤.
∂X∂y=⎣⎢⎢⎢⎡∂x11∂y∂x12∂y⋮∂x1q∂y∂x21∂y∂x22∂y⋮∂x2q∂y⋯⋯⋱⋯∂xp1∂y∂xp2∂y⋮∂xpq∂y⎦⎥⎥⎥⎤.
The following definitions are only provided in numerator-layout notation:(分子展开记法,上述都沿用这个记法)
∂x∂Y=⎣⎢⎢⎡∂x∂y11∂x∂y21⋮∂x∂ym1∂x∂y12∂x∂y22⋮∂x∂ym2⋯⋯⋱⋯∂x∂y1n∂x∂y2n⋮∂x∂ymn⎦⎥⎥⎤.
dX=⎣⎢⎢⎡dx11dx21⋮dxm1dx12dx22⋮dxm2⋯⋯⋱⋯dx1ndx2n⋮dxmn⎦⎥⎥⎤.
Y=(yij(t))p×q
∂t∂Y=(∂t∂yij(t))
X,Y是关于t的函数。
性质:
- (X+Y)′=X′+Y′
- (X⋅Y)′=X′Y+XY′
- (X−1)′=−X−1X′X−1
(矩阵的标量函数对矩阵的导数)
设y=f(X)是p×q阶矩阵X的标量函数,y对X的导数定义为:
∂X∂y=(xij∂y)
称为y的梯度矩阵。
性质:
- 若X为p阶方阵,则tr(X)′=Ip
- tr(AXB)′=A′B′
- tr(AX)′=A′,X≠X′
- tr(AX)′=A+A′−diag(a11,…,app),X=X′
- tr(X′AX)′=(A+A′)X
- det(X)′=(X′)−1det(X)
- 若X为方阵,(tr(X−1A))′=−(X−1AX−1)′
若x,a为列向量,u,v是x的向量值函数,以下表示对x求导,其中内侧的′表示转置,外侧的表示求导。
- 记法:∂x∂y=∇xy,称为y的梯度向量
- (u+v)′=u′+v′
- (uv)′=uv′+u′v
- (x′Ax)′=(A+A′)x
- (a⋅x)′=(a′x)′=(x′a)′=a
- (a′xx′b)′=(ab′+ba′)x
- ∣∣x−a∣∣′=∣∣x−a∣∣x−a
- tr(a)=a
- tr(AB)=tr(BA)
- tr(ABC)=tr(CAB)=tr(BCA)
- tr(A)=tr(A')
- Matrix calculus,wikipedia
- 张伟平 矩阵代数
- Jacobian matirx and determinant