前述内容应该参见几何变换和射影几何(一)。
现补充下述内容:
平面上的一个仿射点变换σ引起了平面的一个向量变换σ¯
(指平面上所有向量组成的集合S¯的变换)
p1′=Ap1+A0,p2′=Ap2+A0
(p1′−p2′)=A(p1−p2)
这说明P′Q′⃗的坐标只跟σ和向量m有关,而与m的有向线段中的起点的选择无关,因此可以规定集合S¯里的一个对应法则σ¯,它把m对应到P′Q′⃗,即:
σ¯(m)=σ¯(PQ⃗)=P′Q′⃗
由上述讨论知σ¯是S¯的一个变换。
设在平面上规定了一个定向,它用单位法向量e代表,用(a,b)表示以a,b为邻边的并且边界的环行方向为a到b的旋转方向的定向平行四边形的定向面积,易知:
a×b=(a,b)e
定理 设仿射变换τ在仿射标架I[O;e1,e2]中的公式为
(x′y′)=(a11a21a12a22)(xy)+(a1a2)
对于任意不共线向量a,b设τ¯(a)=a′,τ¯(b)=b′,则有
(a,b)(a′,b′)=∣∣∣∣a11a21a12a22∣∣∣∣
proof.
由于τ是仿射变换,因此它把仿射标架I变成了仿射标架II,τ¯在I中的公式可算出e1′的I坐标是(a11,a21)′,e2′的I坐标是(a12,a22
设a,b的I坐标分别为(u1,v1),(u2,v2),则a′,b′的II坐标分别为(u1,v1),(u2,v2)。在坐标系I中计算得:
a×b==(u1e1+v1e2)×(u2e1+v2e2)∣∣∣∣u1v1u2v2∣∣∣∣(e1×e2)
因为a×b=(a,b)e,e1×e2=(e1,e2)e所以
(a,b)=∣∣∣∣u1v1u2v2∣∣∣∣(e1,e2)
注意到此公式对平面上的任意向量a,b均成立,特别地,对于e1′,e2′有
(e1′,e2′)=∣∣∣∣a11a21a12a22∣∣∣∣(e1,e2)
同理,在II中计算得:
(a′,b′)=∣∣∣∣u1v1u2v2∣∣∣∣(e1′,e2′)
因此
(a,b)(a′,b′)=(e1,e2)(e1′,e2′)=∣∣∣∣a11a21a12a22∣∣∣∣
易知如果仿射变换τ在仿射坐标系I中的公式的系数矩阵为A,那么τ在仿射坐标系II中的公式的系数矩阵为H−1AH,其中H是I到II的过渡矩阵。因为
∣H−1AH∣=∣A∣
所以仿射变换tau的公式中的系数矩阵的行列式与仿射标架的选择无关。
仿射变换τ的公式中的系数矩阵的行列式称为τ的行列式记作dτ,仿射变换τ按同一个比值∣dτ∣来改变平面上所有(有面积)的图形的面积,因此把∣dτ∣称为仿射变换τ的变积系数。
设
{x=ρcosθy=ρsinθ
我们把上式看做由直角坐标平面ρOθ到直角坐标平面xOy的一种变换,即对于ρOθ上的一点M′(ρ,θ)通过变换变成了xOy平面上的一点M(x,y),在两个平面各自限定的范围内,这种变换还是一一映射,
定理
T:x=x(u,v),y=y(u,v)
将平面uOv上的闭区域D'变为xOy上的D,且满足
- x(u,v),y(u,v)在D′上具有一阶连续偏导数;
- 在D'上的雅各比矩阵J(u,v)=∂(u,v)∂(x,y)≠0
- 变换T:D′→D是一对一的,有
dxdy=∣J(u,v)∣dudv
J=[∂x1∂f⋯∂xn∂f]=⎣⎢⎢⎢⎡∂x1∂f1⋮∂x1∂fm⋯⋱⋯∂xn∂f1⋮∂xn∂fm⎦⎥⎥⎥⎤
The Jacobian generalizes the gradient of a scalar (mathematics)|scalar-valued function of multiple variables, which itself generalizes the derivative of a scalar-valued function of a single variable. In other words, the Jacobian for a scalar-valued multivariate function is the gradient and that of a scalar-valued function of single variable is simply its derivative. The Jacobian can also be thought of as describing the amount of "stretching", "rotating" or "transforming" that a transformation imposes locally. For example, if (x′,y′)=f(x,y)is used to transform an image, the Jacobian Jf(x,y) describes how the image in the neighborhood of (x,y) is transformed.

If a function is differentiable at a point, its derivative is given in coordinates by the Jacobian, but a function does not need to be differentiable for the Jacobian to be defined, since only the partial derivatives are required to exist.
If p is a point in Rn and f is derivative at p, then its derivative is given by Jf(p). In this case, the linear map described by Jf(p) is the best linear approximation off near the point p, in the sense that
f(x)=f(p)+Jf(p)(x−p)+o(∥x−p∥)
for x close top and where o is the Little-o_notation forx→p and ∣∣x−p∣∣ is the Euclidean distance between x andp.
Compare this to a Taylor series for a scalar function of a scalar argument, truncated to first order:
f(x)=f(p)+f′(p)(x−p)+o(x−p).
In a sense, both the gradient and Jacobian are "derivative"—the former the first derivative of a ''scalar function'' of several variables, the latter the first derivative of a ''vector function'' of several variables.
The Jacobian of the gradient of a scalar function of several variables has a special name: the Hessian matrix, which in a sense is the "second derivative" of the function in question.
- 解析几何 丘维声
- Jacobi Matirx,Wikipedia