椭圆积分简介

在大地测量中,求椭圆弧长时常常会碰到椭圆积分的问题,下面将其完整的表述出来

引入

引入问题是求椭球的子午线的弧长

在经度为某一定值的子午线上,其微分弧长为:
dS=MdBdS=MdB
其中M是子午线的曲率半径
M=1κ(B)=a(1e2)(1e2sin2B)3/2M=\frac{1}{\kappa (B)}=\frac{a(1-e^2)}{(1-e^2\sin^2 B)^{3/2}}
欲求纬度B1B_1至纬度B2B_2之间区段的子午线弧长,可对上式积分
s=B1B2MdB=a(1e2)B1B2(1e2sin2B)3/2dBs=\int_{B_1}^{B_2}MdB=a(1-e^2)\int_{B_1}^{B_2}(1-e^2\sin^2 B)^{-3/2}dB

椭圆弧长的计算

设椭圆的参数方程为:
{x=acosθy=bsinθ\left\{ \begin{aligned} &x=a\cos \theta\\ &y=b\sin \theta \end{aligned} \right.
其中θ\theta是离心角(测量中可以视为归化纬度),弧微分dsds为:
ds=x2+y2dθ=a2sin2θ+b2cos2θdθ=a1e2cos2θdθ\begin{aligned} ds=&\sqrt{x'^2+y'^2}d\theta \\ =&\sqrt{a^2\sin^2\theta+b^2\cos^2\theta}d\theta\\ =&a\sqrt{1-e^2\cos^2\theta}d\theta \end{aligned}
ϕ=π/2θ\phi=\pi/2-\theta,取θ[0,x]\theta\in [0,x]
s=0xa1e2cos2θdθ=π2xπ21e2sin2ϕdϕ\begin{aligned} s=&\int_0^x a\sqrt{1-e^2\cos^2 \theta}d\theta \\ =&\int_{\frac{\pi}{2}-x}^{\frac{\pi}{2}} \sqrt{1-e^2\sin^2 \phi}d\phi \end{aligned}

椭圆积分

For expressing one argument:

第一类椭圆积分

The incomplete elliptic integral of the first kindF is defined as
F(φ,k)=F(φk2)=F(sinφ;k)=0φdθ1k2sin2θ.F(\varphi,k) = F\left(\varphi \,|\, k^2\right) = F(\sin \varphi ; k) = \int_0^\varphi \frac {d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}.
is also noted as:
F(φm)=0φdθ1msin2θF(\varphi|m)=\int_0^\varphi \frac {d\theta}{\sqrt{1 - m \sin^2 \theta}}
MatLab:
ellipticF(phi,m)
ellipitcK(m)=ellipticF(pi/2,m)

the complete elliptic integral of the first kind:
K(m)=0π2dθ1msin2θK(m)=\int_0^\frac{\pi}{2}\frac{d\theta}{\sqrt{1-m\sin^2\theta}}

第二类椭圆积分

The incomplete elliptic integral of the second kind E in trigonometric form is
E(φ,k)=0φ1k2sin2θdθE(\varphi,k)=\int_0^\varphi\sqrt{1-k^2\sin^2\theta}d\theta
is also noted as:
E(φm)=0φ1msin2θdθE(\varphi|m)=\int_0^\varphi\sqrt{1-m\sin^2\theta}d\theta
φ\varphi的意义:从椭圆y轴正半轴开始,顺时针的旋转角φ=π/2u\varphi=\pi/2-u
matlab:
ellipticE(phi,m)
ellipticE(m)=elliptic(pi/2,m)

第三类椭圆积分

The incomplete elliptic integral of the third kind Π\Pi is
Π(n;φm)=0φ11nsin2θdθ1msin2θ\Pi(n;\varphi|m)=\int_0^\varphi\frac{1}{1-n\sin^2\theta}\frac{d\theta}{\sqrt{1-m\sin^2 \theta}}
The meridian arc length from the equator to latitude φ\varphi is also related to a special case of Π\Pi
m(φ)=a(1e2)Π(e2;φe2)m(\varphi)=a(1-e^2)\Pi(e^2;\varphi|e^2)
matlab:
ellipticPi(n,phi,m)
ellipticPi(n,m)=ellipticPi(n,pi/2,m)

椭圆函数

Jacobi Elliptic Functions

第一类椭圆积分的反函数

The The Jacobi elliptic functions are defined in terms of the integral
u=0φdθ1msin2φu=\int_0^\varphi\frac{d\theta}{\sqrt{1-m\sin^2\varphi}}
Then
sn(u)=sinφ,cn(u)=cosφ,dn(u)=1msin2φsn(u)=\sin\varphi,\quad cn(u)=\cos\varphi,\quad dn(u)=\sqrt{1-m\sin^2\varphi}
椭圆的自然参数方程:

matlab:
[SN,CN,DN]=ellipj(U,M)
[SN,CN,DN]=ellipj(U,M,tol)

关系式

E(φk2)=(1k2)Π(k2;φk2)+k2sinφcosφ1k2sin2φE(\varphi|k^2)=(1-k^2)\Pi(k^2;\varphi|k^2)+\frac{k^2\sin\varphi\cos\varphi}{\sqrt{1-k^2\sin^2\varphi}}
proof.proof.
E(φk2)(1k2)Π(k2;φk2)=k2sinφcosφ1k2sin2φ\impliedby E(\varphi|k^2)-(1-k^2)\Pi(k^2;\varphi|k^2)=\frac{k^2\sin\varphi\cos\varphi}{\sqrt{1-k^2\sin^2\varphi}}
两边对φ\varphi求导
Right=k2(cos2φsin2φ)(1k2sin2φ)+k4sin2φcos2φ(1k2sin2φ)3/2=k4sin4φ2k2sin2φ+k2(1k2sin2φ)3/2=Left\begin{aligned} Right=&\frac{k^2(\cos^2\varphi-\sin^2\varphi)(1-k^2\sin^2\varphi)+k^4\sin^2\varphi\cos^2\varphi}{(1-k^2\sin^2\varphi)^{3/2}}\\ =&\frac{k^4\sin^4\varphi-2k^2\sin^2\varphi+k^2}{(1-k^2\sin^2\varphi)^{3/2}}=Left \end{aligned}
φ=0\varphi=0时左右两边相等,故等式成立

编程计算

Matlab
已知:B,uB,u:
设从赤道面沿子午线正方向到该点的弧长为s

  1. 大地纬度表示
    s=a(1e2)Π(e2;Be2)=a(1e2)(ellipticPi(e2,B,e2)s=a(1-e^2)\Pi(e^2;B|e^2)=a(1-e^2)(ellipticPi(e^2,B,e^2)
  2. 归化纬度表示
    s=a(E(π2,e)E(π2u,e))=a(ellipticE(e2)ellipticE(pi/2u,e2))s=a(E(\frac{\pi}{2},e)-E(\frac{\pi}{2}-u,e))=a(ellipticE(e^2)-ellipticE(pi/2-u,e^2))

数值计算

二项展开式

(1+x)m=1+mx+m(m1)2!x2++m(m1)(mn+1)n!xn(1<x<1)(1+x)^m=1+mx+\frac{m(m-1)}{2!}x^2+\cdots+\frac{m(m-1)\cdots(m-n+1)}{n!}x^n\quad(-1\lt x\lt 1)
特殊地,当m=1/2时,有
1+x=1+12x124x2+13246x3+(1)n(2n3)!!(2n)!!xn+(1x1)\sqrt{1+x}=1+\frac{1}{2}x-\frac{1}{2\cdot 4}x^2+\frac{1\cdot 3}{2\cdot 4\cdot 6}x^3-\cdots+(-1)^n\frac{(2n-3)!!}{(2n)!!}x^n+\cdots\quad (-1\le x\le1)
当m=-1/2时,有
11+x=112x+1324x2135246x3++(1)n(2n1)!!(2n)!!xn+(1<x1)\frac{1}{\sqrt{1+x}}=1-\frac{1}{2}x+\frac{1\cdot3}{2\cdot 4}x^2-\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}x^3+\cdots+(-1)^n\frac{(2n-1)!!}{(2n)!!}x^n+\cdots\quad(-1\lt x\le 1)
通过带入求解。

参考资料

  1. Elliptic integral .wikipedia
  2. matlab help documentation.
  3. 过家春,等;基于第二类椭圆积分的子午线弧长公式变换及解算(错误较多,有修订)
  4. 胡绍宗;椭圆积分的计算及应用